CALCULUS

tidwingo)

Finding Limits Graphically & Numerically G.N.A.W.

Name ______Period ____

Graphically Numerically

Use the graph of $f(x) = \frac{x^2 - 3x - 10}{x^2 - 8x + 15}$ below to complete the activity.

Complete the table.

х	f(x)
4.9	
4.99	
4.999	
5	
5.001	
5.01	
5.1	

GRAPHIC NUMERIC ALGEBRAIC

WORDS

ally

uch that the extended y = g(x) is continuous over

$$g(x) = \begin{cases} \frac{x^2 - 3x - 10}{x^2 - 8x + 15} \; ; \; x \neq 5 \\ k & : x = 5 \end{cases}$$

Verbally

- 1. $f(5) = ____ g(5) = ____$
- 2. The domain of f(x) is _____

3.
$$\lim_{x \to 3^{-}} f(x) =$$

$$\lim_{x \to 3^+} f(x) = \underline{\hspace{1cm}}$$

4.
$$\lim_{x \to 3} f(x) =$$

GNAW on Finding Limits The Rule of Jour

Finding Limits Graphically & Numerically

Name _____

G.N.A.W.

Date	Period

Graphically

Use the graph of $f(x) = \frac{x^2 - 3x - 10}{x^2 - 8x + 15}$ below to complete the activity.

Numerically

Complete the table.

x	f(x)
4.9	
4.99	
4.999	
5	
5.001	
5.01	
5.1	

Algebraically

Find the value for k such that the extended piecewise function y=g(x) is continuous over all reals.

$$g(x) = \begin{cases} \frac{x^2 - 3x - 10}{x^2 - 8x + 15} ; x \neq 5 \\ k ; x = 5 \end{cases}$$

Verbally

- 1. $f(5) = ____ g(5) = ____$
- 2. The domain of f(x) is _____

3.
$$\lim_{x \to 3^{-}} f(x) =$$

$$\lim_{x \to 3^+} f(x) = \underline{\hspace{1cm}}$$

4.
$$\lim_{x \to 3} f(x) =$$

5. As the values of x get closer and closer to 5, f(x) gets closer and closer to _____

6. As
$$x \to 5$$
, $f(x) \to$

7.
$$\lim_{x \to 5} f(x) =$$

8.
$$\lim_{x \to -\infty} f(x) = \underline{\qquad} \text{ and } \lim_{x \to \infty} f(x) = \underline{\qquad}$$

Finding Limits Graphically & Numerically

G.N.A.W.

Name _____

Date

____ Period _____

Graphically

Use the graph of $f(x) = \frac{x^2 - 3x - 10}{x^2 - 8x + 15}$ below to complete the activity.

Numerically

Complete the table.

f(x)	
3.6315	
3.5125	
3.5012	
Undefined	
3.4987	
3.4875	
3.3809	

Algebraically

Find the value for k such that the extended piecewise function y=g(x) is continuous over all reals.

$$g(x) = \begin{cases} \frac{x^2 - 3x - 10}{x^2 - 8x + 15} ; x \neq 5 \\ k ; x = 5 \end{cases}$$

$$f(x) = \frac{(x-5)(x+2)}{(x-5)(x-3)}$$

$$f(5 = \frac{5+2}{5-3} = \frac{7}{2}$$

$$K = 3.5$$

Verbally

- 1. f(5) = undefined g(5) = 3.5
- 2. The domain of f(x) is _____All reals

Except $x \neq 3.5$

3.
$$\lim_{x \to 3^{-}} f(x) = \underline{\qquad}$$
$$\lim_{x \to 3^{+}} f(x) = \underline{\qquad}$$

4.
$$\lim_{x \to 3} f(x) = \frac{\text{Does not exist}}{\text{Does not exist}}$$

5. As the values of x get closer and closer to 5, f(x) gets closer and closer to 3.5

6. As
$$x \to 5$$
, $f(x) \to 3.5$

7.
$$\lim_{x \to 5} f(x) = \frac{3.5}{1}$$

8.
$$\lim_{x \to -\infty} f(x) = 1$$
 and $\lim_{x \to \infty} f(x) = 1$